Vortex and spacing at ranges of up to 200 km in and around Jupiter’s polar cyclones

  • Orton, JS et al. The first close-up images of Jupiter’s polar regions: results from the Juno Mission JunoCam instrument. Geophysics. Precision. Lett. 444599-4606 (2017).

    advertisements
    Article – Commodity

    Google Scholar

  • Adriani, A. et al. Clusters of cyclones orbit around Jupiter’s poles. temper nature 555216–219 (2018).

  • Tabataba-Vakili, F. et al. Long-term tracking of polar cyclones on Jupiter from polar observations using JunoCam. Icarus 335113405 (2020).

    Article – Commodity

    Google Scholar

  • Adriani, A. et al. Two-year observations of Jupiter’s polar regions by JIRAM aboard Juno. J Geoffs. Precision. (2020).

  • Mura, A., Adriani, A. & Bracco, A. Oscillations and stability of Jupiter’s polar cyclones. Geophysics. Precision. Lett. 48e2021GL094235. (2021).

  • Grassi, Dr.; et al. First estimate of wind fields in Jupiter’s polar regions from JIRAM-Juno images. J Geoffs. Precision. planets 1231511-1524 (2018).

    advertisements
    Article – Commodity

    Google Scholar

  • Orton, GS, and Yanamandra-Fisher, PA Saturn temperature field from high-resolution mid-infrared imaging. Sciences 307696-698 (2005).

    advertisements
    Article – Commodity

    Google Scholar

  • Dyudina, UA et al. Dynamics of the south polar vortex of Saturn. Sciences 3191801 (2008).

    advertisements
    Article – Commodity

    Google Scholar

  • Dyudina, UA et al. Saturn’s south polar vortex compared to other large eddies in the solar system. Icarus 202240 – 248 (2009).

    advertisements
    Article – Commodity

    Google Scholar

  • Sommeria, J., Meyers, S. & Swinney, H. Model laboratory of an eastward planetary jet. temper nature 33758-61 (1989).

    advertisements
    Article – Commodity

    Google Scholar

  • Allison, M., Godfrey, D., and Bebe, R.; Waveform dynamic interpretation of Saturn’s polar hexagon. Sciences 2471061-1063 (1990).

    advertisements
    Article – Commodity

    Google Scholar

  • Aguiar, ACB, Read, PL, Wordsworth, RD, Salter, T. & Yamazaki, YH. A laboratory model of Saturn’s North Polar Hexagon. Icarus 206755-763 (2010).

    advertisements
    Article – Commodity

    Google Scholar

  • Sanchez-Laviga, A. et al. The constant long-range motion of the Saturn hexagon and the stability of its closed jet stream under seasonal changes. Geophysics. Precision. Lett. 411425-1431 (2014).

    advertisements
    Article – Commodity

    Google Scholar

  • Morales-Juberias, R., Sayanagi, KM, Simon, A.A., Fletcher, LN & Cosentino, R.G. Meandering a shallow atmospheric plane as a model for Saturn’s north polar hexagon. astronomy. J lite. 8061–6 (2015).

  • Scott, R. K. Polar accretion of a cyclonic vortex. Geophysics. astronomy. Floyd Dynam. 105409-420 (2011).

    advertisements
    MathSciNet
    Article – Commodity

    Google Scholar

  • O’Neill, ME, Emanuel, KA & Flierl, GR Formation of the polar vortex in the giant planet’s atmosphere due to moist convection. nat. Geosci. 8523-526 (2015).

    advertisements
    Article – Commodity

    Google Scholar

  • O’Neill, ME, Emanuel, KA & Flierl, GR Weak planes and strong hurricanes: modeling the shallow waters of giant polar caps. J. Atmos. Sciences. 731841-1855 (2016).

    advertisements
    Article – Commodity

    Google Scholar

  • Brueshaber, S. R., Sayanagi, K. M. & Dowling, T. E. Dynamical systems of the giant planet’s polar vortices. Icarus 32346-61 (2019).

    advertisements
    Article – Commodity

    Google Scholar

  • Siegelman, L., Young, W.R. & Ingersoll, AP polar vortex crystals: appearance and structure. Brooke. Acad Natel. knows the United States of America 119e2120486119 (2022).

    MathSciNet
    Article – Commodity

    Google Scholar

  • Siegelman, L.; et al. Wet convection results in refined energy transfer at high Jovian latitudes. nat. Phys. 18357-361 (2022).

  • Li, C., Ingersoll, A. P., Klipfel, A. P. & Brettle, H. Stability modeling of polygonal patterns of eddies at Jupiter’s poles as revealed by the Juno spacecraft. Brooke. Acad Natel. knows the United States of America 11724082-24087 (2020).

    advertisements
    Article – Commodity

    Google Scholar

  • Thomson, SI & McIntyre, ME Jupiter’s jupiter: a new perturbative model showing statistical stability without large-scale dissipation. J. Atmos. Sciences. 731119-1141 (2016).

    advertisements
    Article – Commodity

    Google Scholar

  • Rubio, A.M., Julien, K., Knobloch, E. & Weiss, JB. High-end energy transfer in fast-spinning three-dimensional turbulent convection. Phys. Reverend Litt. 112144501 (2014).

    advertisements
    Article – Commodity

    Google Scholar

  • Novi, L., von Hardenberg, J., Hughes, D.W., Provenzale, A. & Spiegel, E.A. Rotates at a Rayleigh-Benard convection speed with a tilted axis. Phys. pastor. I will 99053116 (2019).

    advertisements
    Article – Commodity

    Google Scholar

  • Yadav, R. K., Heimpel, M. & Bloxham, J. Convection-driven deep vortex formation on Jupiter and Saturn. Sciences. case. 6eabb9298 (2020).

    advertisements
    Article – Commodity

    Google Scholar

  • Kapyla, P.J., Mantere, MJ & Hackman, T. Starspots due to large-scale eddies in rotating turbulent convection. astronomy. c. 74234 (2011).

    advertisements
    Article – Commodity

    Google Scholar

  • Heimpel, M., Gastine, T. & Wicht, J. Simulation of deep-rooted jets and shallow vortices in gas giant atmospheres. nat. Geosci. 919-23 (2016).

  • Kay, T, Chan, KL and Mayer, H.G. Deep are closely packed with long-lived cyclones at Jupiter’s poles. planet. Sciences. c. 281 (2021).

    Article – Commodity

    Google Scholar

  • Ingersoll, A. & Cuzzi, J. Dynamics of Jupiter’s cloud bands. J. Atmos. Sciences. 26981-985 (1969).

  • Limaye, S. Jupiter: New estimates of mean zonal flow at the cloud level. Icarus 65335–352 (1986).

    advertisements
    Article – Commodity

    Google Scholar

  • Lee, LM et al. Life cycles of Jupiter spots from Cassini images. Icarus 1729-23 (2004).

    advertisements
    Article – Commodity

    Google Scholar

  • Garcia-Melendo, E., Perez-Hoyos, S., Sanchez-Lavega, A. & Hueso, R. 2004–2009 Saturn zonal wind profile from Cassini ISS images and their long-term variability. Icarus 21562-74 (2011).

    advertisements
    Article – Commodity

    Google Scholar

  • Dowling, T.; Relationship between the potential vortex and the winds of the region on Jupiter. J. Atmos. Sciences. 5014-22 (1993).

    advertisements

    Google Scholar

  • Achterberg, R. & Ingersoll, A. A naturalistic approach to Jovian atmospheric dynamics. J. Atmos. Sciences. 462448–2462 (1989).

    advertisements

    Google Scholar

  • Wong, M. H., de Pater, I., Asay-Davis, X., Marcus, PS & Go, C. Y. The vertical structure of Jupiter’s Oval BA before and after it blushed: what has changed? Icarus 215211-225 (2011).

    advertisements
    Article – Commodity

    Google Scholar

  • Hamill, H et al. HST Imaging weather phenomena caused by the impact of Comet Shoemaker-Levy 9. Sciences 2671288-1296 (1995).

    advertisements
    Article – Commodity

    Google Scholar

  • Rhines, P. Waves and perturbation at the beta level. J. Mechanical fluids. 69417-443 (1975).

    advertisements
    Maths
    Article – Commodity

    Google Scholar

  • Theiss, c. Energy series toward the equator, critical latitude, and the predominance of cyclonic vortices in geological disturbances. J. Phys. Oceanogr. 341663-1678 (2004).

    advertisements

    Google Scholar

  • Scott, R. K. and Bulvani, L. M., Forced dispersal shallow water turbulence on the sphere and the atmospheric circulation of atmospheric giant planets. J. Atmos. Sciences. 643158-3176 (2007).

    advertisements
    Article – Commodity

    Google Scholar

  • Mied, R. & Lindemann, G. The spread and evolution of Gulf Stream cyclonic episodes. J. Phys. Oceanogr. 91183–1206 (1979).

    advertisements

    Google Scholar

  • Chassignet, E. & Cushman-Roisin, B. On the effect of the substrate on the propagation of nonlinear oceanic eddies. J. Phys. Oceanogr. 21939-957 (1991).

    advertisements

    Google Scholar

  • Adriani, A. et al. JIRAM, Jovian infrared aurora chart. Space Science. pastor. 213393-446 (2017).

    advertisements
    Article – Commodity

    Google Scholar

  • Garcia-Ortega, E., Lopez, L. & Sanchez, JL. Diagnostic and sensitivity study of two severe storms in the southeastern Andes. Atmos. Precision. 93161–178 (2009).

    Article – Commodity

    Google Scholar

  • Marion, G. R. & Trapp, R. J. Dynamic coupling of rising convection, lower clouds, and cold puddles in a supercelled thunderstorm simulation. J Geoffs. Precision. Atmos. 124664-683 (2019).

    advertisements
    Article – Commodity

    Google Scholar

  • Solov’ev, A.A., Parfinenko, L.D., Efremov, VI, Kirichek, E.A. & Korolkova, OA. astronomy. Space Science. 364222 (2019).

    advertisements
    Article – Commodity

    Google Scholar

  • Juckes, M. Quasi-terrestrial dynamics in the tropopause. J. Atmos. Sciences. 512756–2768 (1994).

    advertisements

    Google Scholar

  • Held, I.M., Pierrehumbert, R. T., Garner, S. T. & Swanson, A. Surface quasi-geostrophic dynamics. J. Mechanical fluids. 2821-20 (1995).

    advertisements
    MathSciNet
    Maths
    Article – Commodity

    Google Scholar

  • Lapeyre, G. & Klein, P. Dynamics of the upper ocean layers in terms of quasi-surface theory. J. Phys. Oceanogr. 36165–176 (2006).

    advertisements
    MathSciNet
    Article – Commodity

    Google Scholar

  • Lapeyre, G. The sub-geographical surface. Liquids 27–28 (2017).

    advertisements
    Article – Commodity

    Google Scholar

  • Youth kinetic energy, RMB, PL reading, forward and reverse cascades in Jupiter’s turbulent weather layer. nat. Phys. 131135-1140 (2017).

    Article – Commodity

    Google Scholar

  • Gonzalez, RC & Woods, RE digital image processing (Pearson, 2016).

  • Scarica, P. et al. The stability of the Juoter’s south polar vortices was examined through the vortex using Juno/JIRAM data. J Geoffs. Accuracy, planetsAnd the (2021).

    Article – Commodity

    Google Scholar